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Superconductors, classified by materials, embrace at least four broad groups: (i) BCS
metals and alloys; (ii) heavy Fermion materials; (iii) high-Tc cuprates and (some) organic
compounds, and (iv) fullerides. Broadly speaking, in classes (i) and (iv), with (i) possibly
embracing the recent discovery of superconductivity in MgB2 with Tc � 40K, electron
liquids flow through essentially non-magnetic lattices and the electron-phonon inter-
action is a key component of the mechanism for Cooper pairing. In classes (ii) and
(iii), plus the low-Tc material Sr2RuO4, electron or hole liquids flow through assemblies
with magnetic spin fluctuations. The nature of the normal state in class (iii) is not yet
universally agreed, both Fermi or Luttinger liquids remaining viable to date, the
former, however, with the formation of precursor 2e Bosons somewhat above Tc. Our
own studies reveal some common ground between classes (ii) and (iii), involving
coherence lengths and effective masses, as well as non-s-wave pairing, though the
interactions leading to pairing almost certainly have different physical origins in these
two groups. Finally, topological superconductivity is reviewed. It is argued that such
a treatment of a topological superfluid could eventually deepen the understanding
of the class (iv) fullerides. Resonating valence bond theory, used by Anderson and
co-workers as an, of course, approximate strongly-correlated electron technique for
high-Tc cuprates, can itself be re-written in the form of topological superconductivity,
as discussed especially by Wiegmann and collaborators.
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1. BACKGROUND AND OUTLINE

In previous studies, we have focussed on the high-Tc cuprates, with

special attention being given to electron or hole liquids flowing

through assemblies with antiferromagnetic backgrounds. Some experi-

mental tests, on the normal state of high-Tc materials, involved the

product of the in-plane electrical resistivity and the nuclear spin-lattice

relaxation time. While Fermi liquid theory, based on electron or hole

liquids flowing through assemblies with such spin fluctuations leads to

a prediction which can be tested, one material YBa2Cu4O8, for which

experimental data is available deviates markedly from the Fermi liquid

prediction as T approaches the superconducting transition tempera-

ture Tc from above (see Fig. 4). This was suggested to be due to the

formation of r-space precursor Bosons [1–3], and the major review

by Timusk and Statt [4] concluded that this picture remained viable

when confronted with a much wider body of experimental evidence.

Furthermore, in subsequent theoretical work by one of us [5], using

spin glass theory in which a Luttinger liquid phase (see Section 2 for

details of this ‘phase’ of electrons) is known to exist [6], it was shown

that while the theoretical prediction was different from the Fermi

liquid result [see Eq. (6)], it may provide a considerable experimental

challenge to make a decisive choice between the two predictions.

Our aim in the present review is different from the previous studies

reported above, and we shall begin with a very brief, and it seems to

us at the time of writing, essentially straightforward, materials clas-

sification of superconductors. Thus, we assert that superconducting

materials embrace at least four broad classes as follows:

i. BCS metals and alloys;

ii. Heavy Fermion materials;

iii. High-Tc cuprates plus (some) organic superconductors;

iv. Alkali-metal doped fullerites.

A few months after the important finding of MgB2 as a superconduc-

tor with Tc as high as 39K [7], i.e. well above the commonly accepted
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limit allowed by BCS theory and strong-coupling generalizations

thereof, recent determination of the phonon density of states in

MgB2 via neutron scattering [8,9] allowed us to establish that such

material may still fit into category (i) above.

The other comment we need to make here concerns class (iii). The

fact that some organic compounds fit nicely along with the high-Tc
cuprates in the ‘materials’ classification above has been emphasized

especially by McKenzie [10]. His figure of the phase diagram of some

such organic compounds under pressure has been redrawn in Fig. 1

(see also [11,12]). As he stresses, the phase diagram has considerable

similarity to that of the high-Tc cuprates, provided the independent

FIGURE 1 Schematic phase diagram of the �-(BEDT-TTF)2-X organic superconduc-
tors, redrawn from Ref. [10]. Such a phase diagram is similar to that of the high-Tc
cuprate superconductors, with hydrostatic pressure playing the role of doping. SC
denotes the superconducting phase, AF and PM denote the antiferromagnetic
and paramagnetic insulating phases, respectively. Kanoda [11,12] suggested that the
application of hydrostatic pressure is to be related to a variation of Ueff =W , where
Ueff is an effective on-site (dimer) Coulomb interaction andW the in-plane band-width.
The symbols schematically indicate the positions of the organic compounds with
X¼Cu[N(CN)2]Cl, Cu[N(CN)2]Br, Cu(NCS)2 (left to right) according to their ambient
pressure ground-state properties. See also [15] for a generalization of such a phase
diagram, embracing further electronic as well as structural instabilities at intermediate
temperatures.
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variable ‘pressure’ in Fig. 1 for the organic superconductors is replaced

by ‘doping’ in the high-Tc cuprates.
1

In the present review, we shall discuss the nature of these broad

classes of materials in terms of a first-principles theory classification,

having three different fundamental bases. Two of them, Fermi and

Luttinger liquids, have been briefly referred to above and some of

their predictions will be taken up in Section 2. The third area, ‘topo-

logical superconductivity’, is discussed in Section 4.

1.1. Cooper Pairing in Conventional and Unconventional

Superconductors

Besides these three areas of basic theory, a lot of attention will be

devoted to pairing mechanisms and the symmetry of the order

parameter. While this is dealt with at length in Section 3, we close

this Introduction by anticipating some points to be more fully

developed below.

It is now established beyond reasonable doubt that category (i)

superconductors correspond to Cooper s-wave pairing, whereas the

‘unconventional’ superconductors, heavy Fermion, high-Tc cuprates

and some organic salts have non-s-wave pairing. The name ‘heavy

Fermion’, it should be added here (see [16]), implies that in category

(ii) materials the normal state is a Fermi liquid, but with effective

mass m�, which is very large (m�=me � 100).

As already mentioned above, while in BCS materials Cooper pairing

only takes place below Tc, in the high-Tc cuprates there is a body of

evidence reviewed fully by Timusk and Statt [4] that points to the

formation of (2e) r-space Bosons somewhat above Tc.

Turning briefly to category (iv), in which delocalized electrons from

the alkali metal dopants flow through a lattice of C60 buckyballs,

Gunnarsson [17] has given an authoritative review that concludes

that superconductivity in fullerides has its origins in electron–lattice

interaction. In the penultimate section of the present review, we

1An underlying electronic topological transition in the single-particle spectrum may be
responsible of the nonmonotonic dependence of Tc on doping or pressure both in the
high-Tc cuprates and in the organic quasi-2D superconductors [13,14].
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shall return to the doped fullerite category as a possible area where

‘topological superconductivity’ may come into its own.

2. SOME THEORETICAL PREDICTIONS FOR FERMI OR

LUTTINGER LIQUID NORMAL STATES

Let us begin by comparing and contrasting some theoretical pre-

dictions for (a) Fermi-liquid and (b) Luttinger-liquid properties of

the normal states of superconductors. Then we immediately encounter

the crucial role of dimensionality D.

As a canonical model of interacting electrons, it is helpful to start

from the homogeneous electron liquid, or jellium. This is a model of

a metal going back essentially to Sommerfeld in the early days of quan-

tum mechanics [18]. Instead of the granular ions in real metals such as

Na or Cu, one smears out the positive charge into a non-responsive uni-

form neutralizing background (or jelly) in which electrons move but

correlated by Coulomb repulsion energy e2=rij between electrons i

and j at separation rij . The model has a single parameter rs, the mean

interelectronic spacing, related to the uniform density �0 of the electron

liquid by

�0 ¼
3

4�r3s
: ð1Þ

2.1. Momentum Distribution

2.1.1. Fermi Liquid in D¼ 3 Dimensions

Figure 2 shows first of all the usual Fermi distribution nðpÞ at T ¼ 0

(dashed line). It is unity for p � pF , with pF denoting the Fermi

momentum, and is zero for p > pF . This is the limit rs ! 0, or the

extreme highdensity limit inwhich kinetic energy completely dominates.

As interactions are ‘switched on’, or equivalently rs becomes greater

than zero, electrons are promoted to states outside the Fermi sphere of

radius pF , leaving holes inside (solid lines of Fig. 2, for rs ¼ 1–3; after

[19]; compare [18]). All this discussion is for dimensionality D ¼ 3. The

important points to make are:

i. The discontinuity in nðpÞ at p ¼ pF is reduced, but not removed,

by the electron-electron interactions.
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ii. In the region of high momentum, the ‘tail’ of nðpÞ decays as � p	8

[20,21], the magnitude of this inverse eighth power term involving

linearly the electron pair correlation function, for the paired spin

case under discussion, at coincidence. This value varies with the

mean interelectronic spacing rs, a simple formula having been con-

structed for the pair function at coincidence by Overhauser [22].

2.1.2. Luttinger Liquid in Dimensionality D¼ 1

Let us turn to the case when D ¼ 1, in the same jellium model. This, in

essence, will reveal the prime characteristic of the so-called Luttinger

liquid [23–25]. Again we focus on the momentum distribution nðpÞ.

We follow below the study of nðpÞ around the Fermi momentum pF
due to Holas and March [26]. They asked the question in a model

related to, but differing in detail from jellium: does the Fermi momen-

tum distribution in the presence of electron–electron repulsion reflect

the Fermi momentum of the non-interacting homogeneous electron

gas? The Holas–March study took, as a starting point, the D ¼ 1

FIGURE 2 Momentum distribution nðpÞ for a Fermi gas at T ¼ 0 (dashed line).
Momentum distributions for a high-density Fermi liquid, for rs ¼ 1–3 (solid lines;
after [19]; compare [18]).
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many-body investigation of Ovchinnikov and Zabrodin [27]. These

latter workers obtained the form of the translationally invariant

first-order density matrix �ðjr	 r0jÞ, but far from the diagonal r ¼ r0

(apart from normalization)

�ðjr	 r0jÞ � �ðRÞ ¼ ð�RÞ	� cos 1
2��Rþ 	0
� �

, ð2Þ

with R ¼ jr	 r0j. By use of Fourier transform techniques, Holas and

March could prove that nðpÞ still, in the presence of strong electron-

electron interactions characterized by the index � and phase 	0 in

Eq. (2), had non-analyticity at the Fermi momentum pF of the original

non-interacting homogeneous electron gas, the non-analytic compo-

nent nnon-analðpÞ having the explicit form, with p ¼ �hhk,

nnon-analðpÞ ¼ CF jk	 kF j
�	1 tan 1

2��
� �

þ tanð	0Þ sgnðk	 kF Þ
� �

: ð3Þ

The result Eq. (3) is displayed in Fig. 3, for � ¼ 9=8 and for three

values of the phase 	0. Though, at first sight, it might appear that

FIGURE 3 Non-analytic contribution nnon-analðpÞ to the momentum distribution nðpÞ
of a jellium in dimensionality D ¼ 1, Eq. (3), for � ¼ 9=8 and 2	0=� ¼ 1:1, 1.125. 1.15.
One recognizes that the behaviour of nnon-analðpÞ changes from monotonic to non-mono-
tonic, as the Fermi momentum is traversed, depending on whether j tan	0j0j tanð12��Þj
(compare [26]).
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the discontinuity persisted at k ¼ kF , close inspection of Eq. (3) shows

that it in fact is zero but that important non-analyticity persists.

Thus, the conclusion of Holas and March was that, in contrast to

D ¼ 3, the Fermi liquid case discussed in Section 2.1.1 above, there is

no longer a discontinuity, though ‘memory’ of the ‘Fermi surface’ in

the non-interacting case remains. This removal of the discontinuity in

the original homogeneous free Fermi gas at D ¼ 1 by switching on

any arbitrarily weak interaction is the prime characteristic of the

Luttinger liquid.

2.1.3. ‘Singular’ Fermi liquids in D¼ 2

The properties of a strongly correlated electron liquid in dimen-

sionality D ¼ 2 have been extensively debated during the last few

years, especially in connection with the unusual features exhibited by

the ‘‘normal’’ (i.e., non superconducting) state of the quasi-2D high-

Tc cuprates (see [28] for a very recent review, where the term ‘singular’

Fermi liquid is coined for this novel correlated state of electron assem-

blies in 2D). Such properties include, in particular, the functional form

of the momentum distribution nðpÞ and the possibility itself of defining

a Fermi surface, since nðpÞ is expected to be smooth at p ¼ pF
(or, equivalently, Z ¼ nðp	F Þ 	 nðp

þ
F Þ ! 0), and quasiparticles are ill-

defined objects.

The issue of dimensional crossover from a Luttinger liquid in D ¼ 1

to a Fermi liquid in D ¼ 3 has been addressed by Castellani et. al. (see

[29] for a review). They employ a nonperturbative diagrammatic

approach, allowing to recover exact Ward identities in continuous

dimensionality 1 < D < 2. They find that charge and spin obey asymp-

totically valid conservation laws down to D ¼ 1 (see, however, [30]).

Therefore, for 1 < D < 2 the low-energy properties can be described

by a ‘‘tomographic’’ Luttinger model [31,32], defined as an angular

sum over 1D Luttinger liquids, each intersecting the 2D Fermi surface

in a ‘left’ and ‘right’ Fermi point.

A viable proposal for a strongly correlated electron liquid in 2D is

that of a ‘‘generalized’’ metal, retaining some features of a Fermi-

liquid picture, such as the existence of a volume-conserving Fermi

surface, in agreement with Luttinger theorem, and some features of

the Tomonaga–Luttinger model, such as spin-charge separation or,
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more generally, electron fractionalization (see Section 4). A possible

realization of such a model for anisotropic, quasi-2D systems such as

the high-Tc cuprates or the quasi-2D organic conductors would be

characterized by confined coherence [33] within the 2D entities

(the CuO2 planes or the bis(ethylenedithio) tetrathiafulvalene (BEDT-

TTF) planes, respectively), instead of confined quasiparticles. Some of

its features, including a possible shape of the momentum distribution

function, may be derived from a suitable Ansatz for the low-lying

properties of the spectral function [34]. However, a consistent derivation

of a non-Fermi liquid theory in 2D from the microscopic point of

view is still lacking, to date [28].

2.2. Resistivity and Nuclear Spin Lattice Relaxation Time

Related to Q-Dependent Susceptibility

The work of Egorov and March [1] took as its starting point the

two-dimensional Fermi liquid theory of Kohno and Yamada for a

liquid of charged Fermions flowing through an antiferromagnetic

background [35]. Essential input from Kohno and Yamada’s work

[35] was that

�ab / T
2�ðQÞ, ð4Þ

where �ab is the in-plane resistivity and �ðQÞ the magnetic

susceptibility of the lattice, at the antiferromagnetic wave vector Q

[Q ¼ ð�=a,�=aÞ below, with a the lattice spacing of a square lattice],

while

ðTT1Þ
	1

/ �ðQÞ, ð5Þ

with T1 the spin lattice relaxation time [35]. It was then straightfor-

ward to eliminate �ðQÞ from Eqs. (4) and (5) above, and obtain the

correlation

�abT1 / T , ð6Þ

which applies to the normal state, i.e. for T > Tc [1].
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3. SYMMETRY OF THE ORDER PARAMETER:

EXPERIMENTAL SIGNATURES OF UNCONVENTIONAL

(NON-s-WAVE) PAIRING IN SUPERFLUID STATES

The relevance of the symmetry properties of the paired state and, in

general, its space variation cannot be overemphasized. This section

will therefore discuss the current understanding concerning the pairing

symmetry of the superconducting materials listed in classes (i)–(iv)

above, invoking experimental information whenever feasible.

All the main macroscopic phenomena characterizing superconduc-

tivity, such as perfect electrical conductivity and the Meissner effect

(see also Section 4.1), require that off-diagonal long-range order

(ODLRO) is established in going into the superconducting state [36].

In conventional (class (i) materials), as well as in high-Tc, superconduc-

tors, this is realized by pairing below a definite temperature Tc.
2 Indeed,

a number of experiments, such as flux quantization, Shapiro steps in

I–V characteristics, and Andreev scattering indicate that condensation

occurs in pairs of charge 2e [37]. This implies that the anomalous

expectation value

bk ¼ hc	k#ck"i, ð7Þ

is nonzero in the superconducting state. Here, ck� is a fermionic

annihilation operator in the state labelled by wavevector k and spin

projection �, and h. . .i denotes a thermal average. The superconduct-

ing gap �k is related to the pair amplitude of Eq. (7) by

�k ¼
P

k0 Vkk0bk0 , where Vkk0 is the pairing potential.

In BCS-like theories, where the normal state is assumed to be a Fermi

liquid, �k is directly related to the anomalous self-energy and to the

spectrum Ek of the Bogoliubov excitations through

E2k ¼ 
2k þ j�kj
2 ð8Þ

(see, e.g., [38]), where 
k ¼ "k 	 � is the single-particle dispersion

relation in the normal state, relative to the chemical potential �.

In theories where the normal state is not a Fermi liquid, such a rela-

tionship does not hold, in principle, and even the fact that �k obeys a

2See however, Section 3.5, which strongly points to the possibility of precursor r-space
Boson formation near to, but above Tc in specific high-Tc cuprates.
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BCS-like self-consistent gap-equation might be questioned. Indeed, the

occurrence of an energy gap in the low-lying excitation spectrum and

the onset of ODLRO are, in general, different phenomena, which

correspond to widely different energy scales kBT
� � kBTc in the under-

doped, short coherence length cuprates [39,40].3 An energy gap and an

order parameter, describing spontaneous breaking of global Uð1Þ

gauge invariance and phase coherence in the superconducting state,

are therefore different quantities, which happen to coincide and open

simultaneously, i.e. at the same transition temperature Tc, in BCS

theory. The continuous evolution of the pseudogap into the supercon-

ducting gap in underdoped cuprates, as shown by ARPES experiments

in the high-Tc bilayer cuprate Bi-2212, suggest however that an

intimate relationship is shared by the two [41].

A possible relationship between the superconducting phase and

other ordered phases at intermediate temperatures above Tc has been

recently evidenced also in some quasi-2D organic superconductors

[15], the larger energy scale kBT
� here corresponding to a spin density

wave developing over quasi-1D patches of the Fermi surface of such

compounds. In particular, such observations allowed Müller et al.

[15] to generalize the schematic phase diagram sketched in Fig. 1 in

order to embrace an intermediate temperature ordered phase occurring

for Tc � T9T� over a considerable pressure range, which reminds of

the pseudogap region in the high-Tc cuprates phase diagram.

The symmetry properties of �k, and to a certain extent its overall

k-dependence, are however logically independent of the microscopic

nature of the normal state [42]. On the other hand, the order parameter

(OP) contains important information on the microscopic origin of the

paired state.

In BCS theory (relevant certainly to class (i) materials, and possibly

to class (iv)), the OP is a constant over a narrow shell around the Fermi

level, �k ¼ �0�ðj
k 	 �hh!DjÞ, its width being given by the Debye

frequency !D. This is a clear consequence of the phonon-mediated

nature of the pairing interaction [43]. In the generalized framework

of Eliashberg theory for strongly coupled superconductors [44]

3Quite the opposite happens in Abrikosov–Gor’kov so called ‘gapless’ superconduc-
tors in presence of magnetic impurities, which are examples of low-temperature super-
conductivity characterized by an order parameter, but no gap.
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(see also [45,46], and [47] for a recent, up-to-date review), the gap �ð!Þ

acquires a frequency dependence, which can be viewed in BCS

materials as an image of the phonon density of states Fð!Þ.

Analogously, the k-dependence of the superconducting order

parameter �k in the high-temperature superconductors is expected to

retain the overall essential information of the underlying pairing

mechanism. The latter statement may be specified within the assump-

tion of a Fermi-liquid normal state (plus possible precursor 2e Boson

formation above, but near to, Tc) and in the mean-field approximation

through a definite relation between the pair wave-function and the

superconducting gap (see, e.g., App. B in [48], and [49]).

Due to our limited access to the microscopic physics governing the

onset and the properties of the superconducting state, the symmetry

of the order parameter poses severe restrictions on the available

theoretical frameworks. As an example, interlayer tunneling of pairs

characterizes in a very special way the k-dependence of the order

parameter, and many relevant physical properties [50].

3.1. d-Wave Pairing Symmetry in Superconducting Fluids

Since only global gauge symmetry is spontaneously broken in going

into the superconducting state, the order parameter must transform

according to an irreducible representation of the crystal point group.

One has ‘conventional’ superconductivity when the order parameter

is invariant under the full Hamiltonian symmetry group. In particular,

it must be invariant with respect to crystal rotations and translations,

as well as spin rotations and time reversal. This is all true in BCS

theory, whose order parameter is isotropic.

‘Unconventional’ pairing involves an order parameter which is

invariant only with respect to a group lower than the Hamiltonian

full symmetry group. Unconventional pairing in strongly correlated

fermionic systems is indeed observed in superfluid 3He, where the

paired state is a p-wave triplet, and possibly in the heavy-fermion super-

conductors UPt3 and UBe13 (see Section 3.4) [51]. The possible paired

states for an orthorhombic or a tetragonal lattice, like in most cuprate

superconductors, can be therefore labelled according to the irreducible

representations of the corresponding crystal point groups, viz. D2h and

D4h [37,52].

364 G.G.N. ANGILELLA et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
5
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



Some proposed pairing mechanisms, based on magnetic fluctuations,

critically rely on the possibility that the order parameter assumes dif-

ferent sign (i.e., changes its phase) in different sectors of the first

Brillouin zone [48]. Therefore, the earlier quest for ‘unconventional’

pairing in the cuprates was aimed at evidencing nodes in the order

parameter.

Indirect evidence for nodes can be inferred from the anomalous

behaviour of several measurable quantities as a function of tem-

perature, in the low temperature regime (see [37] for an earlier

review). Such experiments include the measurement of the specific

heat and thermal conductivity, spin susceptibility and nuclear spin

relaxation, as well as penetration depth, which for some time stood

as an evidence in favour of s-wave superconductivity, until the effect

of impurity scattering was duly taken into account.

Within a BCS-like framework, taking anisotropy into account, all

such quantities may be readily expressed in terms of integrals of expres-

sions involving the excitation spectrum Ek of Eq. (8) over the first

Brillouin zone. An asymptotic expansion for low temperatures then

shows that their T-dependence varies whether or not Ek is allowed to

vanish, i.e. whether or not �k has nodes on the Fermi surface. In

general, one finds that such expressions show a polynomial dependence

on T as T ! 0 if �k vanishes on the Fermi surface, the order of such

polynomials depending upon the dimensionality of the k-space avail-

able for integration and the topological character of the nodes (viz. iso-

lated nodes, nodal lines, nodal surface areas) [53]. On the contrary, an

‘activated’ behaviour/ expð	��minÞ is predicted if�k has no nodes on

the Fermi surface, as in BCS theory [37,51]. Here, �min ¼ mink Ek > 0

denotes the minimum gap in the excitation spectrum. More specific

asymptotic behaviours have been predicted within several models for

extended dx2	y2 -wave pairing, which give rise to deviations from the

simple power-law at some intermediate temperature, connected to a

characteristic energy scale of the model [54,55].

3.2. Probing the Phase of the Order Parameter by Experiments on

Electron or Hole Superfluids

It was not until quite recently that unconventional superconductivity

with predominant dx2	y2 symmetry pairing was experimentally
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established in the cuprates. In order to probe the phase of the order

parameter, recourse has been made to a completely different class of

experiments, probably among the most elegant and sophisticated

ever devised in condensed matter physics. All of them exploit the

Josephson effect in quantum phase interferometers, designed in such

a way as to probe the relative phase of different materials, or of a

single material along different directions.

Earlier experiments were carried on HIS Josephson junctions, where

‘H’ denotes a HTSC material (most frequently, YBCO), ‘S’ a conven-

tional, s-wave superconductor (usually, Pb), and ‘I’ an insulating

barrier in between. Such measurements evidenced the presence of

excess states within the region where BCS theory would predict a

fully formed, isotropic gap. Moreover, additional features appear

also farther from the gapped region. Such features are most likely

related to the gap anisotropy, as well as to the details of the junction

and of the tunneling process.

The availability of top quality HTSC single crystals has allowed

the performance of quantum interference experiments in dc

SQUIDs with two HIS junctions [56], single junction modulation

[57], and tricrystal ring magnetometry in epitaxially grown

SQUIDs across zero, two, or three grain boundaries of YBCO [58]

and Tl-2201 [59].

In the original experiment performed by the group of Van Harlingen

[56], a SQUID loop was obtained by closing the two ends of a thin Pb

film either on the same edge, or at the two corner sides of a YBCO

single crystal, parallel to the a and b directions, respectively. The

total supercurrent flowing along the loop is modulated by the trapped

flux of the external magnetic flux, in units of the flux quantum, plus a

phase shift �, which is always zero in the edge-junction configuration,

and 0 � � � � in the corner-junction configuration (see [60] for a

review). One expects either � ¼ 0 or � ¼ �, corresponding to a purely

isotropic, or to a purely d-wave order parameter, respectively. As in

a double-slit optical interferometer experiment, Wollman et al. [56]

were thus able to evidence an order parameter at least with

predominant dx2	y2 symmetry character (�9�) [56].

Wollman et al.’s original results [56] were confirmed by a subsequent

experiment, in which the ‘Fraunhofer’ modulation in the supercurrent

maximum was measured as a function of the magnetic flux trapped
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in a single YBCO-Pb corner-junction [57]. Again, the result is

strongly dependent on the pairing symmetry of the order parameter,

unambiguously supporting unconventional superconductivity with

pronounced d-wave symmetry character, possibly with an admixture

of an s-wave component.

The results of Van Harlingen’s group were soon confirmed by the

experiments of Tsuei et al. [58] in YBCO, and in Tl-2201 [59].

Epitaxial films of YBCO were grown on an appropriate substrate in

the shape of rings, each one crossing either zero, two, or three grain

boundaries, respectively. At a grain boundary, the crystal orientation

changes, corresponding to a ‘frustrated’ HIH junction, in the sense

that the phase difference which minimizes the coupling energy at the

Josephson junction is �, instead of zero [61]. Owing to the mutual

orientation of the crystals at the grain boundaries, one expects that

an integral or an half-odd integral multiple of the flux quantum is to

be trapped in a ring interrupted by zero or two (an even number of),

or by three (an odd number of) junctions, which is indeed observed

experimentally [58,59].

The current understanding of the symmetry of the paired state of

the quasi-2D organic salts �-(ET)2-X is still unsettled. Here, ET is

the organic molecule BEDT-TTF, and X denotes an anion, such as

Cu[N(CN)2]Cl, Cu[N(CN)2]Br, Cu(SCN)2, or I3 [62,63]. The absence

of an Hebel–Slichter peak in NMR data, a power-law low-tempera-

ture behaviour of the inverse nuclear spin-lattice relaxation time

T	1
1 / T2, and a T-linear low-temperature dependence of the thermal

conductivity, all provide indirect evidence of nodes in the OP of such

class (iii) materials. Moreover, evidence against phonon-mediated

pairing in �-(ET)2-X organic superconductors has been recently

reported [64], based on the high-pressure dependence of the elec-

tron-phonon coupling constant extracted from optical and Raman

scattering experiments. The latter finding suggests that a purely or

dominantly electronic mechanism may be at work in the organic

superconductors.

Indeed, theory has long ago predicted [65] that dx2	y2 -wave

superconductivity in �-(ET)2-X may be driven by spin fluctuations

[66–69], while a dxy-wave OP may be substained by charge

fluctuations in the �- and �00-phases of the same class of compounds

[70,71]. However, recent high-resolution specific heat measurements
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in �-(ET)2-Cu[N(CN)2]Br still stand in favour for a fully gapped,

isotropic superconducting state [72], while the actual orientation of

the gap nodes in �-(ET)2-X – should the OP eventually turn out to

be anisotropic – is still an open issue [73].

3.3. Mixed Symmetry

The onset of superconductivity at T ¼ Tc is characterized by a

spontaneous breaking of Uð1Þ global gauge symmetry. Taking into

account the restrictions enforced by the underlying lattice structure,

and barring accidental degeneracies, one expects that such a transition

corresponds to a nonzero contribution to the energy gap �k coming

from only one, well defined, irreducible representation of the crystal

point group, say �k ¼ �
ð1Þ
k , at T9Tc. Such a result has very general

grounds in Ginzburg–Landau theory (see, e.g., [49]), and is well-

known in extended BCS-like mean-field calculations [74]. It has also

been rederived by Siringo et al. [75] in the context of a renormalization

group approach to anisotropic superconductors.

As temperature decreases further below some characteristic tempera-

ture Tm < Tc, the symmetry of the superconducting state may be

lowered, which is accompanied by the opening of a new contribution

�
ð2Þ
k adding up to the total order parameter as

�k ¼ �
ð1Þ
k þ ei��

ð2Þ
k , ð9Þ

where � is the relative phase difference. The two contributions �
ð1Þ
k

and �
ð2Þ
k generally belong to different irreducible representations of

the crystal point group, which motivates the terminology of ‘mixed

symmetry’ superconducting phase. It must be stressed that this

does not correspond to any new superconducting transition: The

order parameter �k related to the breaking of Uð1Þ global gauge

symmetry is already different from zero, and the addition of new

contributions would only correspond to condensation of Cooper

pairs in other available channels. Furthermore, any new contribution

�
ð2Þ
k maintains the scalar character of the order parameter4.

4It is therefore an abuse of terminology that of referring to a new ‘component’ of the
order parameter, even when the latter is not a vector, in the sense of Section 3.4.
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However, assuming that �
ð2Þ
k opens smoothly at Tm, i.e. with

�
ð2Þ
k ðT ¼ TmÞ ¼ 0, the crossover into a mixed symmetry phase would

be accompanied by ‘features’ in thermodynamic quantities, such as a

second peak in the specific heat at constant volume, CV , as is observed

in the heavy Fermion compound UPt3 (see, e.g., [76] and Section 3.4),

or by a change of slope in the magnitude of �k as a function of T .

In principle, the occurrence of a crossover to a mixed superconducting

phase is not forbidden by Ginzburg–Landau theory, but the

observation of features such as a second peak in CV would be

made difficult by the much reduced value of Tm with respect to Tc
(see also [50]).

General symmetry considerations restrict the possible values of the

relative phase difference � between the two gap contributions in

Eq. (9) to � ¼ 0 or �, or � ¼ �=2 or 3�=2. The latter cases imply a

breaking of time reversal symmetry (TRS). Such is the case when the

superconducting state characterized by the OP �k is not equivalent

to that characterized by the complex conjugate OP ��
k [77–79]. Clear

evidence of TRS breaking in the superconducting state of Bi-2212

has been reported by Krishana et al. [80] from measurements of

magnetothermal conductivity. The occurrence of a low-temperature

mixed symmetry phase has been numerically investigated on a

square lattice as a function of various parameters [50,81–84]. Such

studies allowed to classify the possible additional gap component

opening at T ¼ Tm according to its symmetry properties. A renorma-

lization group analysis (see [85] and refs. therein) leaves out the

dx2	y2 þ is- and dx2	y2 þ idxy-wave symmetries as the only possible

candidates, whereas further comparison with ARPES data suggests

that the latter one be the most favourable possibility. A quantum

phase transition at T ¼ 0 from a purely dx2	y2 - to a TRS-breaking

mixed dx2	y2 þ idxy-wave symmetry phase has been reviewed and

discussed with reference to its observability in the cuprates by

Vojta and Sachdev [85] (but see also [86]). Given the gain in

superconducting condensation energy afforded by a new, generally

TRS-breaking component of the OP, Sigrist [87] argued that ‘‘the

presence of such [mixed] states is rather a rule than an exception in

unconventional superconductors’’ (see also [88]).

Reliable evidence for symmetry mixing has been quite recently pro-

vided by experiments carried out on high-quality single-crystal
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samples. Some experiments probe the phase anisotropy directly,

exploiting ARPES or tunneling techniques, as follows:

a. The different temperature dependence of the gap amplitude

observed by Ma et al. [89] in Bi-2212 along the �	M and

�	 X directions in ARPES experiments has been interpreted by

Betouras and Joynt [90] as evidence for an sþ d mixed symmetry

ground state (see also [83,84]).

b. Josephson tunneling experiments, analogous to those performed

by Wollman et al. [57] in corner-junction Pb-YBCO SQUIDs,

were carried out by Kouznetsov et al. [91]. They studied the

dependence of the critical current on the magnitude and the

orientation of an external magnetic field applied to a Pb junction

located across a twin boundary of a YBCO single crystal along the

c-axis. The modulation patterns of the current evolve with the

applied field orientation from a Fraunhofer-like shape, character-

ized by a local maximum at zero field, to an anti-Fraunhofer-like

shape, characterized by a local minimum at zero field. Kouznetsov

et al.’s results [91] are strongly suggestive of a mixed sþ d-wave

superconducting ground state, with predominant d-wave pairing.

c. A conceptually analogous class of tunneling experiments have

been extensively discussed by Klemm et al. (see [92,93] and refs.

therein). They take into account a c-axis twist junction, formed

by the two halves of a Bi-2212 single crystal cleaved between a

pair of BiO layers, rotated with respect to each other of an

angle 	0, and eventually fused back together. They show that

the critical current of Josephson tunneling between mixed states

in the two edges, with predominant d-wave symmetry, would

show a remarkable dependence on 	0.

Some experiments probe the phase anisotropy indirectly, involving

the observation of the low-temperature behaviour of measurable quan-

tities, as below

d. Shrikanth et al. [94,95] report of features in the complex conductiv-

ity � and the penetration length � / ðIm �Þ	1=2 in YBCO as a

function of temperature that may be explained by the opening of

an additional superconducting channel at a temperature below Tc.

e. Nemetschek et al. [96] have recently reviewed many experimental

results from Raman spectroscopy of YBCO, Bi-2212, Hg-1212,
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and Hg-1223, again claiming for symmetry mixing between an

s- and a d-wave contribution (see [96] and refs. therein). In

particular, they recognize that the relative amount of mixing

may depend on doping within a given material, and that ‘‘sponta-

neous breakdown of d-wave symmetry may be rather universal in

high-Tc compounds.’’ Indeed, recent theoretical findings [97,98]

indicate that a phase transition from a rotationally invariant

(s-wave or ‘ ¼ 0) to an unconventional d-wave (‘ ¼ 2) supercon-

ducting ground state (allowing for a possible crossover through

a mixed phase) should be expected on quite general grounds,

and may be related to the BCS to Bose–Einstein crossover as a

function of doping [99].

f. Measurements of the temperature dependence of the thermal

conductivity � of Bi-2212 single crystals in a magnetic field

by Krishana et al. [80] suggest that an applied magnetic field

may induce a crossover from a purely d-wave to a mixed

dx2þy2 þ idxy-wave or dx2þy2 þ is-wave symmetry order parameter

[83,84]. In particular, this would imply breaking of time-reversal

invariance [80].

The above review of experimental data is indeed suggestive that the

actual symmetry of the superconducting paired state in a class (iii)

HTSC is a material-specific property, depending on the details of its

electronic properties as well as of the interaction [100]. However, it

should be expected, on rather general grounds, that the symmetry of

the order parameter crosses over from one symmetry to another, char-

acterized by a lower lattice symmetry, depending on structural and

compositional details (e.g., on doping or disorder), or on external

effects, such as pressure or an applied magnetic field. In intermediate

regions of the phase diagram, such a crossover should allow room

for a mixed symmetry phase, possibly characterized by a spontaneous

breaking of time reversal symmetry.

3.4. Spin-Triplet Pairing

Cooper pairing characterized by a nonzero total spin has been long

known to occur in the A-phase of superfluid 3He [101]. Among

the unconventional superconductors, the most likely candidates to
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spin-triplet pairing are the heavy Fermion compounds UPt3 and

U1	xThxBe13 (0:018 < x < 0:045) [16,51], belonging to class (ii)

above, and Sr2RuO4, characterized by a Tc as low as 1.5K [102].

Since the OP for such materials has to take into account also for the

spin degrees of freedom, as well as of k-space anisotropy, it is usually

written as a (complex) vector dðkÞ, orthogonal to the plane defined by

the two parallel spins in a Cooper pair, and such that dð	kÞ ¼ 	dðkÞ,

in order to ensure a globally odd pair wave-function. In terms of the

vector OP, the superconducting energy gap �k at the wave-vector k,

now a 2� 2 matrix in spin space, can be expressed as

�k ¼ ið� � dðkÞÞ�y, ð10Þ

with � ¼ ð�x, �y, �zÞ the Pauli matrices. Given the (usually k-indepen-

dent) direction of such a vector OP, its overall k-space symmetry and

temperature dependence can be factorized as

dðkÞ ¼ �ðTÞ’ðkÞd̂d: ð11Þ

Some of the current nomenclature for the several orbital symmetries

proposed for pairing in the heavy Fermions and the ruthenates are

summarized in Table I.

It is important to remark that not all of the triplet OPs listed in

Table I do actually present node lines, also depending on dimensional-

ity of the Fermi surface (cf. Table I). Therefore, indirect evidence

of unconventional superconductivity from the low-temperature behav-

iour of electronic properties is more difficult to assess, than in cases

where a scalar OP is appropriate, as for the cuprates.

In order to probe (a) the vector character, and (b) the actual symme-

try (occurrence and location of nodes in k-space) of the OP, one is then

led to consider experiments where (a) the internal spin degrees of

freedom are coupled to an external magnetic field or that associated

to magnetic impurities, and (b) a directional probe is used. Evidence

for (nodeless) p-wave spin-triplet pairing in the heavy Fermion (class

(ii)) compounds UPt3 and U1	xThxBe13 is provided by a comparable

pair-breaking effect induced by both magnetic and nonmagnetic

impurities, by a substantially T-independent spin susceptibility in a

magnetic field perpendicular to d, as well as by experiments implying
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spontaneous TRS breaking [dðkÞ 6� d�ðkÞ] (see also [76,87,106] for

recent reviews).

The current understanding is still less settled for Sr2RuO4. While

spin–singlet pairing seems to be ruled out, and several electronic

properties exhibit power-law behaviours at low temperature, thus

suggesting the presence of nodes in the gap, the actual orientation of

the nodal lines is yet to be determined. Among the various possible

symmetries proposed theoretically (see Table I), the observed

dependence of the thermal conductivity as a function of in-plane

magnetic field rotation seems to point towards fx2	y2 -wave orbital

symmetry [107,108]. Given the structural analogies of Sr2RuO4 with

the prototypical high-Tc cuprate, La2CuO4, such a possibility is quite

appealing, since it would imply a (vector) OP with nodes directed as

for a dx2	y2 -wave (scalar) OP.

3.5. Superconducting Transition Temperatures and Coherence

Length in Non-s-Wave Pairing Materials Correlated with

Spin-Fluctuation Mediated Interaction

In early work, Egorov and March [1] discussed electron or hole liquids

flowing through assemblies with antiferromagnetic spin fluctuations,

and proposed the correlation Eq. (6) above between the in-plane

electrical resistivity �ab and the nuclear-spin lattice relaxation time

T1. This relationship has been tested on the underdoped high-Tc
cuprate YBa2Cu4O8 with T1 extracted from 63Cu NMR data, and

is appropriate somewhat above the superconducting transition

temperature (Fig. 4, redrawn from Fig. A.7.5.1 on p. 355 of [109],

and [3]).

More recently, the present authors [110] have demonstrated that Tc
for non-s-wave pairing superconductors, and in particular for heavy

Fermion materials and high-Tc cuprates, correlated with coherence

length and effective mass (see Fig. 5). The very recent and apparently

quite different studies of Abanov et al. [46], and prior to that, of

Monthoux and Lonzarich [45], are here brought into close contact

with our earlier work [110].

Following [45], in Section 3.5.1, we briefly summarize the essential

input in the treatments of spin-fluctuation mediated pairing in

[45,46]. Anticipating that, we stress at the outset that the common
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feature in [45,46] is a characteristic thermal energy kBTsf associated

with a spin-fluctuation temperature Tsf . Section 3.5.2 connects the

work on Tsf in [45,46] with our own studies on coherence length [110].

3.5.1. Spin-Fluctuation Temperature Related to Tc in p- and

d-Wave Superconductivity in Quasi-2D Metals

Essential input into both [45,46] is a form of the retarded generalized

magnetic susceptibility �ðq,!Þ. Quite specifically, in [45] the pheno-

menological form

�ðq,!Þ ¼
�0�

2
0

�2 þ q̂q2 	 i½!=�ðq̂qÞ�
ð12Þ

is assumed. Here, �	1 and �	10 are correlation lengths in units of the

lattice constant a, with and without strong magnetic correlations,

respectively.

FIGURE 4 Plot of product �abT1 versus temperature T for normal state of high-Tc
compound YBa2Cu4O8 (redrawn from [1]).
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FIGURE 5 (a) Thermal energy kBTc corresponding to superconducting transition
temperature Tc versus characteristic energy �c ¼ �hh2=ðm�
2Þ, Eq. (18), with m� the effec-
tive mass and 
 the coherence length, for six heavy Fermion compounds. The dashed
curve should be regarded mainly as a guide to the eye. (b) log–log plot of panel (a), but
now with high-Tc cuprates in the top right-hand corner. For the cuprates, use has been
made of the in-plane coherence length 
ab [110].
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Monthoux and Lonzarich [45] then adopt a tight-binding form

for the quasiparticle dispersion relation, and subsequently define the

quantities q̂q2� by

q̂q2� ¼ 4� 2½cosðqxaÞ þ cosðqyaÞ�: ð13Þ

In the case of ferromagnetic correlations, typified by the ruthenate

Sr2RuO4 with a low Tc � 1:3K [102], the parameters q̂q2 and �ðq̂qÞ

entering �ðq,!Þ in Eq. (12) are defined as

q̂q2 ¼ q̂q2	 ð14Þ

and

�ðq̂qÞ ¼ Tsf q̂q	, ð15Þ

where Tsf is the spin-fluctuation temperature already referred to in

Section 3.5.

Monthoux and Lonzarich [45] also investigate antiferromagnetic

correlations as in the d-wave paired cuprates, in which case the

above parameters have the form

q̂q2 ¼ q̂q2þ ð16Þ

and

�ðq̂qÞ ¼ Tsf q̂q	: ð17Þ

The final input we need to refer to here is a coupling parameter

g2 in the quasiparticle self-energy �ðq,!Þ, involving of course [see

[45], Eqs. (11)–(13)] summations over wave vectors and Matsubara

frequencies of �ðq,!Þ.

The mean-field Eliashberg equations for nearly ferromagnetic and

nearly antiferromagnetic metals with a single 2D Fermi surface were

then solved numerically in [45], to obtain the ratio of critical

temperature Tc to spin fluctuation temperature, Tsf , essentially as a

function of coupling strength g2 for different values of the inverse
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correlation length �. This was done both for p-wave triplet and d-wave

singlet pairing.

The major predictions of [45,46] were in accord that at strong

coupling, Tc=Tsf exhibits saturation. For a physically reasonable

range of values of �	1, the quantitative results of [45] were: (i) For

p-wave triplet pairing, Tc=Tsf saturates at a value of 1=30, and (ii)

For d-wave singlet pairing, Tc=Tsf has a saturation value of 1=2. This

then is the point at which to make contact between these findings of

[45,46] and our own study [110].

3.5.2. Spin-Fluctuation Temperature Tsf and Correlation Length 
 in

non-s-Wave Pairing Superconductors: Especially

high-Tc Cuprates

In [110], we exposed a relationship, for both heavy Fermion materials

and for high-Tc cuprates, between the thermal energy kBTc and

another characteristic energy, �c say, for such non-s-wave supercon-

ductors, where �c was defined by

�c ¼
�hh2

m�
2
, ð18Þ


 being the coherence length and m� the effective mass (Fig. 5). We

noted [110] that Uemura et al. [111] had already clearly recognized

that m� should enter inversely in determining the scale of kBTc.

Since Monthoux and Lonzarich [45] made their most extensive

numerical investigations for the p-wave triplet pairing, let us take

first the ruthenate Sr2RuO4, discussed at some length in [45]. From

Fig. 2a of [45], for example, provided �2 is in the (physically reasonable)

range from 0.25 to 1.0 and their quantity g2�0=t, with t the hopping

energy, is in the physical range 10–20, then Tc=Tsf is in the range

0.02–0.03, which yields Tsf ’ 50K for Sr2RuO4, compared with a

‘saturation’ value of 40K for this material with Tc � 1:3K. Abanov

et al. [46] refer to values of Tsf � 100K, so there is semiquantitative

accord.

Turning to the high-Tc cuprates, the present authors [110] have

pointed out that in marked contrast to the heavy Fermion materials
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they also considered, kBTc � �hh2=m�
2 and from the saturation limit (ii)

in Section 3.5.1, taken again from [45],

kBTc �
1
2kBTsf ð19Þ

for the d-wave pairing high-Tc cuprates. Thus, one has as a con-

sequence the order of magnitude result

kBTsf �
2�hh2

m�
2
, ð20Þ

and the coherence length 
 of the high-Tc cuprates is plainly deter-

mined by the antiferromagnetic spin-fluctuation mediated pairing,

via a temperature Tsf � 2Tc.

Physical interpretation of the coherence length 
 resulting from d-wave

singlet pairing spin-fluctuation interaction in the high-Tc cuprates We

return to our earlier result [110] obtained from experimental data for

the high-Tc cuprates that kBTc � �c, with �c given by Eq. (18). We now

add to this empirical correlation a further experimental consequence

used by Monthoux and Lonzarich [45], namely that the product of the

thermal energy kBTsf associated with the spin-fluctuation temperature

[45,46] Tsf with �20, the inverse magnetic correlation length squared

without strong magnetic correlations, is constant, i.e.

kBTsf �
2
0 ¼ const: ð21Þ

Adopting the value in their Table V, the constant value turns out to

be � 8t.

Returning to the strong coupling limit to gain further insight into the

factors determining the coherence length 
, we have

kBTc �
1

2
kBTsf �

4t

�20
: ð22Þ

Putting �20 ¼ a
2=‘2m0, where ‘m0 is the (antiferro-) magnetic correlation

length in the high-Tc cuprates, we find almost immediately


 �
a

2

�hh2

m�‘2m0

� �1=2
1

t1=2
: ð23Þ
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Physically, Eq. (23) shows that, in units of the lattice spacing a, the

magnitude of the coherence length is determined by the square root

of the ratio of two further characteristic energies. The first of these is

the kinetic energy of localization of a carrier of mass m� within the

magnetic correlation length ‘m0 determined however in the absence

of strong magnetic correlations. The second energy is t, the magnitude

of the hopping energy.

We can anticipate, using the additional (generally weaker!) variables

g2�0=t and �2 that, provided the range of g2�0=t is limited to the

physical region 10–20 (see [45]) and �2 is likewise restricted to the

range 0.5–1, then Eq. (23) will be replaced, away from the strong coup-

ling limit, by


 �
a

2

�hh2

m�‘2m0

� �1=2
1

t1=2
Fðg2�0=t; �

2Þ, ð24Þ

where F is a slowly varying function of its arguments, F becoming

unity for sufficiently large values of the ‘coupling strength’ g2�0=t,

with �2 restricted to the range quoted above.

Above, the achievement has been to bring the studies of [45,46], in

which the superconducting transition temperature Tc is connected to

the spin-fluctuation temperature Tsf , into direct contact with the

work of Angilella et al. [110] relating kBTc to the characteristic

energy �hh2=m�
2. For a d-wave singlet pairing mediated by antiferro-

magnetic spin fluctuations in the cuprates, the simple, order of

magnitude relation Eq. (20) follows, showing that the coherence

length 
 is determined by the interaction mediated by spin fluctua-

tions. This is expressed, more specifically, in the language of [45],

in Eqs. (23) and (24).

However, the situation regarding the relation of Tsf in the low Tc
ruthenate Sr2RuO4 to the coherence length 
 is much less clear

presently than in the high-Tc cuprates. This may be because of a

competition between nearly ferromagnetic behavior and antiferromag-

netic spin fluctuations. Experiments on �ðq,!Þ using both neutron

scattering and NMR on this ruthenate would be valuable for furthering

understanding of the origins of superconductivity, and especially the

physics of the coherence length in this material. As for Tsf it seems to

lie in the range 40–50K. Having referred to heavy Fermion materials
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in connection with [110], of the six such cases considered there, the

‘anomalous’ material was UPd2Al3 (compare Fig. 1 in [110]). It would

therefore, we believe, be of interest to know more about the magnetic

properties of this material, as it is well known that pure Pd is an

‘almost ferromagnetic’ metal (see, e.g., [112]). If it should turn out in

the material UPd2Al3 that the assumptions underlying [45] are approxi-

mately fulfilled, we thought it of interest to construct from the p-wave

studies of [45] a plot of Tc=t versus Tsf =t (see Fig. 6), by combining data

from their Figs. 2–4. It is worth noting, though we expect the mechan-

isms generally to be different, that the shape of the present Fig. 6 par-

allels that of Fig. 1 of [110]. However, large numbers � 102 to 103 now

appear, supporting the view that the mechanism for the majority of the

heavy Fermion materials considered in [110] is quite different from the

magnetic pairing confirmed here for the high-Tc cuprates.

FIGURE 6 Shows plot of Tc=t versus Tsf =t for p-wave spin-triplet pairing (redrawn
from [113]). This has been constructed by combining numerical data from Figs. 2–4 of
[45], assuming for the parameters the physical range 10 � g2�0=t � 20 and
0:25 � �2 � 1. Points corresponding to the same value of Tsf =t and of g2�0=t, but to
different values of �2, have been arranged as vertical bars. The two curves shown are
guides to the eye through the choices of ‘coupling strength’ g2�0=t of 10 and 20, and have
been extrapolated through the origin.
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4. TOPOLOGICAL SUPERCONDUCTIVITY

The idea of an ordered ground state with elementary excitations

having topological character probably first arose in connection with

the soliton theory of transport in quasi-1D conducting polymers,

such as polyacetylene [114]. The normal state of such systems is

known to belong to the universality class of the Tomonaga–

Luttinger liquid (see Section 2.1.2), which in particular implies separa-

tion of the electron’s spin and charge degrees of freedom. More gener-

ally, this aspect has been recently interpreted as an instance of electron

fractionalization [115], i.e. the possibility of having fractional quantum

numbers for excitations in a solid. Apart from polyacetylene, modern

realizations of quasi-1D systems displaying electron fractionalization

and spin-charge separation include carbon nanotubes, which can be

related to fullerides, listed in class (iv) above, and Bechgaard salts

[116]. In higher dimensionality, electron fractionalization has been

proved particularly successful in the theory of the fractional quantum

Hall effect, and gave rise to the theory of anyon superconductivity (see

[117] for a brief review). In the last few years, moreover, the ideas of

electron fractionalization and topological order have been employed

in order to attempt at a description of the unconventional normal as

well as the superconducting state of the high-Tc cuprates [118].

4.1. London Equations and Hydrodynamics of a Superfluid

In order to account for the electromagnetic properties of a supercon-

ductor, F. and H. London (1935) imposed a further constraint to the

solutions of the equation of motion of a perfectly conducting charged

fluid with current density j ¼ �v, combined with Maxwell equations

for the external electric (E) and magnetic (B) fields. London’s equation

reads:

J� j ¼ 	
nse

2

mc
B, ð25Þ

where ns is the superfluid density (� ¼ 	nse; see, e.g., [119] for a deri-

vation, and for reference to London’s original papers). One major

consequence of Eq. (25) is that persistent currents and magnetic
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fields in a superconducting specimen can exist only within a layer of

thickness � ¼ ðnc2=4�nse
2Þ
1=2 (London’s penetration length) from the

surface (Meissner effect).

The equation of motion for the current density j (assuming an isotro-

pic velocity v) can then be written as

J�þ
1

v2
@j

@t
¼ �E, ð26Þ

which describes a compressible superfluid, with compressibility � ¼

ð�v=cÞ	2 [120,121]. In the Lorentz gauge J � Aþ v	2@t	 ¼ 0, both equa-

tions reduce to

j ¼ 	�	2A, ð27Þ

where A is the external vector potential. Indeed, replacing E by the

gradient of pressure in Eq. (26) and B by a torque in Eq. (25), one

recovers a complete analogy with Euler equations for an ideal

compressible liquid (i.e., there is no shear modulus). Moreover,

Eq. (27) allows to establish the equivalence between the Meissner

effect (B ¼ J� A ¼ 0) and Landau’s criterion for superfluidity

(J� v ¼ 0, in any simply connected region). Such equivalence is

made possible by the identification of the mechanical momentum mv

of a superfluid particle with the electromagnetic momentum 2eA=c

of a Cooper pair of electrons.5

4.2. Fröhlich’s One-Dimensional Model with Peierls

Instability: Sliding Lattices But no Superconductivity

Landau’s criterion for superfluidity does not work for 1D systems,

since one cannot distinguish between a liquid and a solid by means

of shear modulus in 1D. However, a few years before BCS theory,

Frölich observed [122] that an incommensurate charge density wave

(CDW) due to a Peierls instability would slide through a 1D metal

5A generalization of Landau’s condition to multiply connected regions allows to
take into account for vortices in a superfluid, and leads to flux quantization in a
superconductor.
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lattice without attenuation. Since a CDW carries an electric charge

and implies a gap in the electronic spectrum, Frölich concluded that

the ground state of such a 1D system is superconducting. It should

be noted, however, that no true off-diagonal long-range order can

develop in 1D [36], and that any finite amount of impurities is

expected to pin the CDW in 1D, thus preventing Frölich superconduc-

tivity from being observed in real systems.

Charge transport by means of sliding CDW has been however

reported in the quasi-2D organic salt �-(ET)2KHg(SCN)4 below

� 2K and under very high magnetic fields (020T) [123], and the poss-

ible relevance of topological superconductivity for the quasi-2D cup-

rate superconductors has been recently suggested by Abanov and

Wiegmann [124].

Fröhlich superconducting state in 1D lends itself as the prototype of

a topologically ordered state. Topological order has been invoked as a

viable mechanism for superconductivity in reduced dimensionality

strongly correlated electron systems. Anyon superconductivity is an

example of topological superconductivity in 2D [117]. A further

example is provided by resonating valence bond superconductivity,

to be discussed below (see Section 4.3).

4.3. Resonating Valence Bond Approach and Topological

Superconductivity

4.3.1. Anderson’s Resonating Valence Bond Approach to the

High-Tc Cuprates

Senatore and March [125] have reviewed the way in which the

Hubbard Hamiltonian, for large values of the on-site Coulomb inter-

action U, can be transformed into an antiferromagnetic Heisenberg

Hamiltonian by means of a suitable unitary transformation [125]. In

this connection and also in relation to the high-Tc superconductivity,

it seems appropriate here to briefly review the mathematical formula-

tion due to Anderson [126,127] of the concept of the resonating

valence-bond (RVB) states first put forward by Pauling [128].

For electrons on a lattice, one can view a singlet bond or pair as

the state formed when two electrons with opposite spin are localized

on two distinct sites. A RVB state is a coherent superposition of such
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singlet bonds; its energy is further lowered as a result of matrix elements

connecting different valence-bond configurations.

Heuristically, valence bonds can be viewed as real-space Cooper

pairs that repel each other, a combined effect of the Pauli principle

and the Coulomb interaction. When there is one electron per site,

charge fluctuations are suppressed, and one obtains an insulating

state. However, as one moves away from half filling, current can

flow. The assembly becomes superconducting as the valence bonds

Bose condense.

Anderson [126,127], while stressing the difficulty of making quanti-

tative calculations with RVB states, gives a suggestive representation

by exploiting the Gutzwiller-type projection technique.

Clearly, a delocalized or mobile valence bond can be written as

by� j�0i ¼
1ffiffiffiffi
N

p
X
i

a
y
i"a

y
iþ�#

 !
j0i

¼
1ffiffiffiffi
N

p
X
k

a
y
k"a

y
	k# expðk � �Þ

 !
j0i,

ð28Þ

b
y
� being the creation operator for a valence-bond with lattice vector �,

while N is the total number of lattice sites. A distribution of bond

lengths can be constructed by summing b
y
� over � with appropriate

weights. One then finds a new creation operator,

by ¼
X
k

cka
y
k"a

y
	k#, ð29Þ

with the restriction

X
k

ck ¼ 0, ð30Þ

imposed to avoid double occupancy.

Anderson proceeds by (a) allowing Bose condensation of such

mobile valence bonds,

j�i ¼ ðbyÞN=2j0i, ð31Þ
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and by (b) projecting out the double occupancy with an infinite-U

Gutzwiller projection operator Pd ¼
Q
ið1	 ni"ni#Þ,

j�RVBi ¼ Pdðb
yÞ
N=2

j0i: ð32Þ

One can then demonstrate that the RVB state constructed above can

be obtained with simple manipulations from a standard BCS state

by projecting on the state with N particles and projecting out, at the

same time, the double occupancy:

j�RVBi ¼ PN=2Pd
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ck
p þ

ckffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ck

p a
y
k"a

y
	k#

� �
j0i: ð33Þ

Baskaran et al. [129] have subsequently demonstrated that by treating

the large-U Hamiltonian of Eq. (3.44) in [125] with a mean-field

(Hartree–Fock) approximation, one obtains precisely a BCS-type

Hamiltonian which, for half-filling, yields the RVB state heuristically

introduced above. One could also find that
P

k ck ¼ 0, jckj ¼ 1 and the

ck change sign across what they call a ‘pseudo-Fermi surface’. The

nature of the excitations from such a RVB state will not be discussed

here, being referred to the original papers.

4.3.2. RVB for Topological Superconductors

A modification of the original Hubbard model [130–132], the so-called

t-J model, has become widely used in the field of strongly correlated

electronic assemblies. At zero doping, this model reduces to the

Heisenberg Hamiltonian

H ¼
X
ab

JabSa � Sb, ð34Þ

with spins Sa and Sb on sublattices A and B, respectively. March and

Klein [133] have compared in the present context the resonating

valence bond and the Néel states (see also below). When ‘doping’

terms are added, the new (t-J) Hamiltonian has a hopping amplitude

tij and an exchange amplitude Jij which connect the nearest sites.
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The total number of electrons Ne, say, is near to the lattice site number

and we write below (see also [120,121])

Ne ¼ N0ð1	 ���Þ: ð35Þ

Additionally, a strong (Hubbard) interaction forbids double occu-

pancy of sites:

ni ¼
X
�

c
y
i�ci� ¼ 0 or 1: ð36Þ

As well as an average spin value, two further operators [120,121]

characterize the ground-state of an antiferromagnet, namely the

density of energy �ij ,

�ij ¼
1
4 þ Si � Sj
� �

, ð37Þ

and chirality, or topological order measure WðCÞ,

WðCÞ ¼ Tr
Y
i2C

1
2 þ � � Si
� �

, ð38Þ

the � denoting Pauli matrices, while C is a lattice contour [134–137].

The operator WðCÞ takes on especial significance for the doped

material as it determines the correlation of electronic phases at differ-

ent spatial points.

This is the point at which to make contact with the RVB ideas, going

back to Pauling on d-electrons in transition metals, and utilized by

Anderson and co-workers in their treatment of high-Tc materials (in

class (iii) above) [120,121]. In the RVB approach, the amplitude and

phase �ij of Anderson et al. [120,121] have the form

�ij ¼ j�ijj
2 ð39Þ

and

WðCÞ ¼
Y
C

�ij : ð40Þ
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Wiegmann and co-workers then write the hopping Hamiltonian H in

terms of hi – a dopant (hole) operator, an electron operator being

represented by the product of a ‘spinon’ and a ‘holon’, namely

c�ih
y
i . H then has the form

H ¼ t
X
habi

hyðaÞhðbÞ�ab þH:c: ð41Þ

Here, a and b are sites of the sublattices A and B and �ab is given by

�ab ¼
X
�

cy� ðaÞc�ðbÞ

* +
: ð42Þ

Wiegmann stresses that, depending on parameter values in this

model, physically different regimes can be embraced. This is related

closely to the conclusions of March and Klein [133], who analyze the

crossover between RVB and Néel state situations. Wiegmann stresses

additionally that in the latter state the modulus and phase of bonds

fluctuate similarly and cannot be separated. In this Néel state, the

holes form a Fermi liquid and interact weakly with spin fluctuations.

Wiegmann discusses, by invoking next a semi-classical strategy,

some of the predictions flowing from the above Hamiltonian H in

the RVB regime, and the interested reader is referred to his work

[120,121] for further details.

5. SUMMARY AND FUTURE DIRECTIONS

Our conclusions at the time of writing can be stated as follows.

Class (i) superconductors: BCSmetals and alloys are well understood,

with electron-phonon interaction as the mechanism for (s-wave)

Cooper pairing. In the normal state, the momentum distribution

nðpÞ is characteristic of a D ¼ 3 Fermi liquid with a discontinuity Z

at the Fermi momentum pF , which is reduced from the free Fermi

gas value of unity by electron-electron interactions. In the supercon-

ducting state, the discontinuity in nðpÞ is ‘rounded off’ (see, e.g.,

[18,138]). Recent determination of the phonon density of states in
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MgB2 via neutron scattering [8,9] allows to place such material in class

(i), despite its relatively high Tc. The recent study of Silkin et al. [139]

makes interesting calculations which show that Tc can be increased in

surfaces of this material.

Class (ii) and (iii) superconductors Heavy Fermion and high-Tc
unconventional superconductors are characterized by pairing with

‘ > 0: for heavy Fermion systems, p-wave pairing seems prominent,

while for most high-Tc cuprates ‘ ¼ 2 appears very probable (see,

however, the objections raised by Brandow [140]). Tc in both these

categories (ii) and (iii) appears to correlate interestingly with coherence

length and effective mass. But the pairing mechanisms seem quite

different, the high-Tc cuprate interaction being mediated by d-wave

singlet (antiferro-) magnetic fluctuations. Although the current under-

standing is still unsettled, several experimental findings support

unconventional pairing also in the quasi-2D organic superconductors.

The determination of the actual direction of the nodal lines of the OP

in such compounds would allow to discern whether spin or charge

fluctuations be at work in mediating the pairing interaction. A time

reversal symmetry breaking triplet order parameter has been suggested

for both heavy Fermion compounds and the ruthenates.

Class (iv) superconductors Alkali-metal doped fullerites, as empha-

sized by Gunnarsson [17], appear to be characterized by s-wave

Cooper pairs arising from electron-phonon interaction, and the overall

phenomenology of fullerides can be accounted for within the frame of

Eliashberg theory [141].

It is our belief, at the time of writing, that there is a really firm body

of evidence, firm from both experiment and theory, in support of the

conclusions. However, in turning finally to propose what seem to us

to be some interesting directions for future studies, we are beginning

to trespass into potentially controversial areas, and so we shall be

very brief.

Secondly, in the search for even higher Tc values than in the cuprates,

f -wave superconductivity may be important, as our own proposed

correlation of Tc (but now for the unconventional superconductors

in categories (ii) and (iii)) with coherence length and effective mass

suggests [110]: the term ð�hh2=2mÞð‘ð‘þ 1Þ=r2Þ in the centrifugal potential

energy suggesting that a factor of 2 increase in Tc would seem plausible,
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since ‘ð‘þ 1Þ goes from 6 for a d-wave pairing to 12 for f -wave pairing

superconductors. Of course, this assumes no ‘trade-off’ in (a) coherence

length, and (b) effective mass (see [113]) as one passes from d-wave to

f -wave pairing. Already, in the very recent literature, f -wave pairing is

specifically discussed, in one case associated with an organic

superconductor [142,143].

Thirdly, and entirely speculatively, can topological superconductiv-

ity come into its own in the doped fullerites (or other materials, as

yet presumably unexplored)? This could take one back to the early

studies by the quantum chemists, Coulson, Longuet-Higgins, Pople,

and Walmsley where ‘‘misfits’’ were generalized to solitons in conduct-

ing polymers [114,144]. The topological nature was recognized

by Jackiw and Schrieffer [145], and the result is the same topological

invariant in Wiegmann’s approach. But, for the moment, it is not

clear what experiments could distinguish between the very convincing

picture of superconductivity in the doped fullerites presented by

Gunnarsson in his review [17] and the (presumably alternative)

viewpoint of these materials as topological superconductors. Do we

expect topological superconductivity to be an altogether new mechan-

ism or a reformulation consistent with Gunnarsson’s treatment.
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